REMIX-CYCLE-CONSISTENT LEARNING ON ADVERSARIALLY LEARNED SEPARATOR FOR ACCURATE AND STABLE UNSUPERVISED SPEECH SEPARATION

Kohei Saijo, Tetsuji Ogawa

研究成果

2 被引用数 (Scopus)

抄録

A new learning algorithm for speech separation networks is designed to explicitly reduce residual noise and artifacts in the separated signal in an unsupervised manner. Generative adversarial networks are known to be effective in constructing separation networks when the ground truth for the observed signal is inaccessible. Still, weak objectives aimed at distribution-to-distribution mapping make the learning unstable and limit their performance. This study introduces the remix-cycle-consistency loss as a more appropriate objective function and uses it to fine-tune adversarially learned source separation models. The remix-cycle-consistency loss is defined as the difference between the mixed speech observed at microphones and the pseudo-mixed speech obtained by alternating the process of separating the mixed sound and remixing its outputs with another combination. The minimization of this loss leads to an explicit reduction in the distortions in the output of the separation network. Experimental comparisons with multichannel speech separation demonstrated that the proposed method achieved high separation accuracy and learning stability comparable to supervised learning.

本文言語English
ホスト出版物のタイトル2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ4373-4377
ページ数5
ISBN(電子版)9781665405409
DOI
出版ステータスPublished - 2022
イベント47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
継続期間: 2022 5月 232022 5月 27

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2022-May
ISSN(印刷版)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
国/地域Singapore
CityVirtual, Online
Period22/5/2322/5/27

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「REMIX-CYCLE-CONSISTENT LEARNING ON ADVERSARIALLY LEARNED SEPARATOR FOR ACCURATE AND STABLE UNSUPERVISED SPEECH SEPARATION」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル