Representation formulas of solutions and bifurcation sheets to a nonlocal allen-cahn equation

Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani*

*この研究の対応する著者

研究成果: Article査読

抄録

We are interested in the Neumann problem of a 1D stationary Allen-Cahn equation with a nonlocal term. In our previous papers [4] and [5], we obtained a global bifurcation branch, and showed the existence and uniqueness of secondary bifurcation point. At this point, asymmetric solutions bifurcate from a branch of odd-symmetric solutions. In this paper, we give representation formulas of all solutions on the secondary bifurcation branch, and a bifurcation sheet which consists of bifurcation curves with heights.

本文言語English
ページ(範囲)4907-4925
ページ数19
ジャーナルDiscrete and Continuous Dynamical Systems- Series A
40
8
DOI
出版ステータスPublished - 2020 8月

ASJC Scopus subject areas

  • 分析
  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「Representation formulas of solutions and bifurcation sheets to a nonlocal allen-cahn equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル