Representation method for a set of documents from the viewpoint of Bayesian statistics

Masayuki Goto*, Takashi Ishida, Shigeichi Hirasawa

*この研究の対応する著者

研究成果査読

1 被引用数 (Scopus)

抄録

In this paper, we consider the Bayesian approach for representation of a set of documents. In the field of representation of a set of documents, many previous models, such as the latent semantic analysis (LSA), the probabilistic latent semantic analysis (PLSA), the Semantic Aggregate Model (SAM), the Bayesian Latent Semantic Analysis (BLSA), and so on, were proposed. In this paper, we formulate the Bayes optimal solutions for estimation of parameters and selection of the dimension of the hidden latent class in these models and analyze it's asymptotic properties.

本文言語English
ページ(範囲)4637-4642
ページ数6
ジャーナルProceedings of the IEEE International Conference on Systems, Man and Cybernetics
5
出版ステータスPublished - 2003
外部発表はい
イベントSystem Security and Assurance - Washington, DC, United States
継続期間: 2003 10 52003 10 8

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ハードウェアとアーキテクチャ

フィンガープリント

「Representation method for a set of documents from the viewpoint of Bayesian statistics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル