Resummation of Diagrammatic Series with Zero Convergence Radius for Strongly Correlated Fermions

R. Rossi, Takahiro Ohgoe, K. Van Houcke, F. Werner

研究成果: Article査読

28 被引用数 (Scopus)

抄録

We demonstrate that a summing up series of Feynman diagrams can yield unbiased accurate results for strongly correlated fermions even when the convergence radius vanishes. We consider the unitary Fermi gas, a model of nonrelativistic fermions in three-dimensional continuous space. Diagrams are built from partially dressed or fully dressed propagators of single particles and pairs. The series is resummed by a conformal-Borel transformation that incorporates the large-order behavior and the analytic structure in the Borel plane, which are found by the instanton approach. We report highly accurate numerical results for the equation of state in the normal unpolarized regime, and reconcile experimental data with the theoretically conjectured fourth virial coefficient.

本文言語English
論文番号130405
ジャーナルPhysical Review Letters
121
13
DOI
出版ステータスPublished - 2018 9月 27
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Resummation of Diagrammatic Series with Zero Convergence Radius for Strongly Correlated Fermions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル