Rigidity of groups of circle diffeomorphisms and teichmüller spaces

Katsuhiko Matsuzaki*

*この研究の対応する著者

研究成果査読

2 被引用数 (Scopus)

抄録

We consider deformations of a group of circle diffeomorphisms with Hölder continuous derivative in the framework of quasiconformal Teichmüller theory and showcertain rigidity under conjugation by symmetric homeomorphisms of the circle. As an application, we give a condition for such a diffeomorphism group to be conjugate to a Möbius group by a diffeomorphism of the same regularity. The strategy is to find a fixed point of the group which acts isometrically on the integrable Teichmüller space with the Weil–Petersson metric.

本文言語English
ページ(範囲)511-548
ページ数38
ジャーナルJournal d'Analyse Mathematique
140
2
DOI
出版ステータスPublished - 2020 3 1

ASJC Scopus subject areas

  • 分析
  • 数学 (全般)

フィンガープリント

「Rigidity of groups of circle diffeomorphisms and teichmüller spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル