Robust causality test of infinite variance processes

Fumiya Akashi, Masanobu Taniguchi, Anna Clara Monti

研究成果: Article

抜粋

This paper develops a robust causality test for time series with infinite variance innovation processes. First, we introduce a measure of dependence for vector nonparametric linear processes, and derive the asymptotic distribution of the test statistic by Taniguchi et al. (1996) in the infinite variance case. Second, we construct a weighted version of the generalized empirical likelihood (GEL) test statistic, called the self-weighted GEL statistic in the time domain. The limiting distribution of the self-weighted GEL test statistic is shown to be the usual chi-squared one regardless of whether the model has finite variance or not. Some simulation experiments illustrate satisfactory finite sample performances of the proposed test.

元の言語English
ページ(範囲)235-245
ページ数11
ジャーナルJournal of Econometrics
216
発行部数1
DOI
出版物ステータスPublished - 2020 5

ASJC Scopus subject areas

  • Economics and Econometrics

フィンガープリント Robust causality test of infinite variance processes' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用