TY - JOUR
T1 - Rotation of F1-ATPase and the hinge residues of the β subunit
AU - Masaike, Tomoko
AU - Mitome, Noriyo
AU - Noji, Hiroyuki
AU - Muneyuki, Eiro
AU - Yasuda, Ryohei
AU - Kinosita, Kazuhiko
AU - Yoshida, Masasuke
PY - 2000/1
Y1 - 2000/1
N2 - Rotation of a motor protein, F1-ATPase, was demonstrated using a unique single-molecule observation system. This paper reviews what has been clarified by this system and then focuses on the role of residues at the hinge region of the β subunit. We have visualised rotation of a single molecule of F1-ATPase by attaching a fluorescent actin filament to the top of the γ subunit in the immobilised F1-ATPase, thus settling a major controversy regarding the rotary catalysis. The rotation of the γ subunit was exclusively in one direction, as could be predicted by the crystal structure of bovine heart F1-ATPase. Rotation at low ATP concentrations revealed that one revolution consists of three 120°steps, each fuelled by the binding of an ATP to the β subunit. The mean work done by a 120°step was approximately 80 pN nm, a value close to the free energy liberated by hydrolysis of one ATP molecule, implying nearly 100 % efficiency of energy conversion. The torque is probably generated by the β subunit, which undergoes large opening-closing domain motion upon binding of AT(D)P. We identified three hinge residues, βHis179, βGly180 and βGly181, whose peptide bond dihedral angles are drastically changed during domain motion. Simultaneous substitution of these residues with alanine resulted in nearly complete loss (99 %) of ATPase activity. Single or double substitution of the two Gly residues did not abolish the ATPase activity. However, reflecting the shift of the equilibrium between the open and closed forms of the β subunit, single substitution caused changes in the propensity to generate the kinetically trapped Mg-ADP inhibited form: Gly180Ala enhanced the propensity and Gly181Ala abolished the propensity. In spite of these changes, the mean rotational torque was not changed significantly for any of the mutants.
AB - Rotation of a motor protein, F1-ATPase, was demonstrated using a unique single-molecule observation system. This paper reviews what has been clarified by this system and then focuses on the role of residues at the hinge region of the β subunit. We have visualised rotation of a single molecule of F1-ATPase by attaching a fluorescent actin filament to the top of the γ subunit in the immobilised F1-ATPase, thus settling a major controversy regarding the rotary catalysis. The rotation of the γ subunit was exclusively in one direction, as could be predicted by the crystal structure of bovine heart F1-ATPase. Rotation at low ATP concentrations revealed that one revolution consists of three 120°steps, each fuelled by the binding of an ATP to the β subunit. The mean work done by a 120°step was approximately 80 pN nm, a value close to the free energy liberated by hydrolysis of one ATP molecule, implying nearly 100 % efficiency of energy conversion. The torque is probably generated by the β subunit, which undergoes large opening-closing domain motion upon binding of AT(D)P. We identified three hinge residues, βHis179, βGly180 and βGly181, whose peptide bond dihedral angles are drastically changed during domain motion. Simultaneous substitution of these residues with alanine resulted in nearly complete loss (99 %) of ATPase activity. Single or double substitution of the two Gly residues did not abolish the ATPase activity. However, reflecting the shift of the equilibrium between the open and closed forms of the β subunit, single substitution caused changes in the propensity to generate the kinetically trapped Mg-ADP inhibited form: Gly180Ala enhanced the propensity and Gly181Ala abolished the propensity. In spite of these changes, the mean rotational torque was not changed significantly for any of the mutants.
KW - F-ATPase
KW - FF-ATP synthase
KW - Motor protein
KW - Rotation
KW - Single-molecule observation
UR - http://www.scopus.com/inward/record.url?scp=0033975117&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033975117&partnerID=8YFLogxK
M3 - Article
C2 - 10600667
AN - SCOPUS:0033975117
VL - 203
SP - 1
EP - 8
JO - Journal of Experimental Biology
JF - Journal of Experimental Biology
SN - 0022-0949
IS - 1
ER -