RVFL-LQP: RVFL-based link quality prediction of wireless sensor networks in smart grid

Xue Xue, Wei Sun*, Jianping Wang, Qiyue Li, Guojun Luo, Keping Yu

*この研究の対応する著者

研究成果: Article査読

15 被引用数 (Scopus)

抄録

In the application of wireless sensor networks (WSNs) to smart grid, real-time and accurate wireless link quality prediction (LQP) is important to determine which link is reliable enough to undertake the communication task. However, the existing LQP methods are neither suitable to describe the dynamic stochastic features of link quality nor to ensure the validity of prediction results. In this paper, a random-vector-functional-link-based LQP (RVFL-LQP) algorithm is proposed. The algorithm selects the signal-to-noise ratio (SNR) as the link quality metric and decomposes the raw SNR sequence into the time-varying sequence and the stochastic sequence according to the analysis of wireless link characteristics. Then, the RVFL network is used to establish the prediction model of the time-varying sequence and the variance of the stochastic sequence. Lastly, the probability-guaranteed interval boundary of SNR is predicted, and the validity and practicability of prediction results are evaluated by comparative experiments and real-world application, respectively.

本文言語English
論文番号8951146
ページ(範囲)7829-7841
ページ数13
ジャーナルIEEE Access
8
DOI
出版ステータスPublished - 2020

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 材料科学(全般)
  • 工学(全般)

フィンガープリント

「RVFL-LQP: RVFL-based link quality prediction of wireless sensor networks in smart grid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル