Safety Verification of a 275-kV HTS Cable System under Short-Circuit Current Accidents

Yusuke Yokoo*, Natsuo Takeda, Daichi Horita, Koh Agatsuma, Atsushi Ishiyama, Xudong Wang, Tomohiro Takagi, Masashi Yagi

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A simulation code that analyzes the temperature and pressure in a high-temperature superconducting (HTS) power cable cooled by a forced flow of subcooled liquid nitrogen (LN) has been developed. Analysis of the HTS cable is useful for comprehending the normal operating condition and the generation of heat during the transient state. In Japan, an excessive current of 63 kA may flow in an HTS cable for 0.6 s in the worst case when a short-circuit current accident occurs in a 275-kV class cable. To assess the safety under this condition, a simulation of a 275-kV class 20-m model cable was performed, and the simulation results of the temperature profiles qualitatively agreed with the experimental results. In this study, a finite-difference method was used to solve the nonlinear partial differential equations of the heat-transfer phenomenon through heat conduction. By solving these equations, the temperature profiles of the LN coolant and the cable cores were analyzed. The GASPAK software package (Cryodata) was used to evaluate the fluid properties when the LN temperature in the cable was calculated. According to this result, the simulations focused on the analysis of a real-scale HTS cable in this work.

本文言語English
論文番号8268064
ジャーナルIEEE Transactions on Applied Superconductivity
28
4
DOI
出版ステータスPublished - 2018 6月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 電子工学および電気工学

フィンガープリント

「Safety Verification of a 275-kV HTS Cable System under Short-Circuit Current Accidents」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル