Scaling security of elliptic curves with fast pairing using efficient endomorphisms

Katsuyuki Takashima*

*この研究の対応する著者

研究成果: Article査読

18 被引用数 (Scopus)

抄録

Cryptosystems using pairing computation on elliptic curves have various applications including ID-based encryption ([9], [29], [30] etc.). Scott [33] proposed a scaling method of security by a change of the embedding degree k. On the other hand, he also presented an efficient pairing computation method on an ordinary (non-supersingular) elliptic curve over a large prime field <Fopf>p ([34]). In this paper, we present an implementation method of the pairing computation with both of the security scaling in [33] and the efficiency in [34]. First, we will investigate the mathematical nature of the set of the paremeter r (the order of cyclic group used) so as to support many k's. Then, based on it, we will suggest some modification to the algorithm of Scott in [34] to achieve flexible scalability of security level.

本文言語English
ページ(範囲)152-158
ページ数7
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E90-A
1
DOI
出版ステータスPublished - 2007 1
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Scaling security of elliptic curves with fast pairing using efficient endomorphisms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル