Schrödinger Flow’s Dispersive Estimates in a regime of Re-scaled Potentials

Vladimir Georgiev, Alessandro Michelangeli, Raffaele Scandone*

*この研究の対応する著者

研究成果: Chapter

抄録

The problem of monitoring the (constants in the estimates that quantify the) dispersive behaviour of the flow generated by a Schrödinger operator is posed in terms of the scaling parameter that expresses the small size of the support of the potential, along the scaling limit towards a Hamiltonian of point interaction. At positive size, dispersive estimates are completely classical, but their dependence on the short range of the potential is not explicit, and the understanding of such a dependence would be crucial in connecting the dispersive behaviour of the short-range Schrödinger operator with the zero-range Hamiltonian. The general set-up of the problem is discussed, together with preliminary answers, open questions, and plausible conjectures, in a ‘propaganda’ spirit for this subject.

本文言語English
ホスト出版物のタイトルSpringer INdAM Series
出版社Springer-Verlag Italia s.r.l.
ページ111-125
ページ数15
DOI
出版ステータスPublished - 2022

出版物シリーズ

名前Springer INdAM Series
52
ISSN(印刷版)2281-518X
ISSN(電子版)2281-5198

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Schrödinger Flow’s Dispersive Estimates in a regime of Re-scaled Potentials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル