Searching for cosmic-ray signal from decay of fermionic dark matter with CALET

Saptashwa Bhattacharyya, Holger Martin Motz, Shoji Torii, Yoichi Asaoka

研究成果: Conference article

抄録

The ISS-based CALET detector which is in operation since October 2015, can play an important role in indirect search of Dark Matter by measuring the electron + positron cosmic-ray spectrum in the TeV region for the first time directly. With its fine energy resolution (∼2%) and high proton rejection ratio (1: 105), CALET has a capability to detect fine structures in (e+ + e-) spectrum. In this work, we have investigated CALET's potential to discern between Dark Matter decay and nearby pulsars as the origin of the Cosmic Ray positron excess observed by PAMELA or AMS-02. A parametrization of the propagated electron and positron spectra is fitted to the existing measurements, where either 3-body decay of Fermionic Dark Matter or pulsar assumed responsible for the positron excess. Expected CALET data for Dark Matter decay models which can explain the positron excess are calculated and analyzed. The signal from a particular 3-body Dark Matter decay, which can explain the measurements from the AMS-02 experiment, is shown to be distinguishable from a single pulsar source by observing (e+ +e-) spectrum with CALET. We show that an especially clear separation of the pulsar model is possible from the Dark Matter model for which the diffuse γ-ray flux is possibly compatible with the Fermi-LAT data.

元の言語English
ジャーナルProceedings of Science
出版物ステータスPublished - 2017 1 1
イベント35th International Cosmic Ray Conference, ICRC 2017 - Bexco, Busan, Korea, Republic of
継続期間: 2017 7 102017 7 20

Fingerprint

cosmic rays
dark matter
positrons
pulsars
decay
Alpha Magnetic Spectrometer
International Space Station
rejection
rays
electrons
fine structure
protons
detectors
energy

ASJC Scopus subject areas

  • General

これを引用

Searching for cosmic-ray signal from decay of fermionic dark matter with CALET. / Bhattacharyya, Saptashwa; Motz, Holger Martin; Torii, Shoji; Asaoka, Yoichi.

:: Proceedings of Science, 01.01.2017.

研究成果: Conference article

@article{172011e6dc1d480292c1c214ebbb5822,
title = "Searching for cosmic-ray signal from decay of fermionic dark matter with CALET",
abstract = "The ISS-based CALET detector which is in operation since October 2015, can play an important role in indirect search of Dark Matter by measuring the electron + positron cosmic-ray spectrum in the TeV region for the first time directly. With its fine energy resolution (∼2{\%}) and high proton rejection ratio (1: 105), CALET has a capability to detect fine structures in (e+ + e-) spectrum. In this work, we have investigated CALET's potential to discern between Dark Matter decay and nearby pulsars as the origin of the Cosmic Ray positron excess observed by PAMELA or AMS-02. A parametrization of the propagated electron and positron spectra is fitted to the existing measurements, where either 3-body decay of Fermionic Dark Matter or pulsar assumed responsible for the positron excess. Expected CALET data for Dark Matter decay models which can explain the positron excess are calculated and analyzed. The signal from a particular 3-body Dark Matter decay, which can explain the measurements from the AMS-02 experiment, is shown to be distinguishable from a single pulsar source by observing (e+ +e-) spectrum with CALET. We show that an especially clear separation of the pulsar model is possible from the Dark Matter model for which the diffuse γ-ray flux is possibly compatible with the Fermi-LAT data.",
author = "Saptashwa Bhattacharyya and Motz, {Holger Martin} and Shoji Torii and Yoichi Asaoka",
year = "2017",
month = "1",
day = "1",
language = "English",
journal = "Proceedings of Science",
issn = "1824-8039",
publisher = "Sissa Medialab Srl",

}

TY - JOUR

T1 - Searching for cosmic-ray signal from decay of fermionic dark matter with CALET

AU - Bhattacharyya, Saptashwa

AU - Motz, Holger Martin

AU - Torii, Shoji

AU - Asaoka, Yoichi

PY - 2017/1/1

Y1 - 2017/1/1

N2 - The ISS-based CALET detector which is in operation since October 2015, can play an important role in indirect search of Dark Matter by measuring the electron + positron cosmic-ray spectrum in the TeV region for the first time directly. With its fine energy resolution (∼2%) and high proton rejection ratio (1: 105), CALET has a capability to detect fine structures in (e+ + e-) spectrum. In this work, we have investigated CALET's potential to discern between Dark Matter decay and nearby pulsars as the origin of the Cosmic Ray positron excess observed by PAMELA or AMS-02. A parametrization of the propagated electron and positron spectra is fitted to the existing measurements, where either 3-body decay of Fermionic Dark Matter or pulsar assumed responsible for the positron excess. Expected CALET data for Dark Matter decay models which can explain the positron excess are calculated and analyzed. The signal from a particular 3-body Dark Matter decay, which can explain the measurements from the AMS-02 experiment, is shown to be distinguishable from a single pulsar source by observing (e+ +e-) spectrum with CALET. We show that an especially clear separation of the pulsar model is possible from the Dark Matter model for which the diffuse γ-ray flux is possibly compatible with the Fermi-LAT data.

AB - The ISS-based CALET detector which is in operation since October 2015, can play an important role in indirect search of Dark Matter by measuring the electron + positron cosmic-ray spectrum in the TeV region for the first time directly. With its fine energy resolution (∼2%) and high proton rejection ratio (1: 105), CALET has a capability to detect fine structures in (e+ + e-) spectrum. In this work, we have investigated CALET's potential to discern between Dark Matter decay and nearby pulsars as the origin of the Cosmic Ray positron excess observed by PAMELA or AMS-02. A parametrization of the propagated electron and positron spectra is fitted to the existing measurements, where either 3-body decay of Fermionic Dark Matter or pulsar assumed responsible for the positron excess. Expected CALET data for Dark Matter decay models which can explain the positron excess are calculated and analyzed. The signal from a particular 3-body Dark Matter decay, which can explain the measurements from the AMS-02 experiment, is shown to be distinguishable from a single pulsar source by observing (e+ +e-) spectrum with CALET. We show that an especially clear separation of the pulsar model is possible from the Dark Matter model for which the diffuse γ-ray flux is possibly compatible with the Fermi-LAT data.

UR - http://www.scopus.com/inward/record.url?scp=85046057878&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85046057878&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:85046057878

JO - Proceedings of Science

JF - Proceedings of Science

SN - 1824-8039

ER -