Second-order slepian-wolf coding theorems for non-mixed and mixed sources

Ryo Nomura, Te Sun Han

研究成果: Article

18 引用 (Scopus)

抜粋

The second-order achievable rate region in Slepian-Wolf source coding systems is investigated. The concept of second-order achievable rates, which enables us to make a finer evaluation of achievable rates, has already been introduced and analyzed for general sources in the single-user source coding problem. Analogously, in this paper, we first define the second-order achievable rate region for the Slepian-Wolf coding system to establish the source coding theorem in the second-order sense. The Slepian-Wolf coding problem for correlated sources is one of typical problems in the multiterminal information theory. In particular, Miyake and Kanaya, and Han have established the first-order source coding theorems for general correlated sources. On the other hand, in general, the second-order achievable rate problem for the Slepian-Wolf coding system with general sources remains still open up to present. In this paper, we present the analysis concerning the second-order achievable rates for general sources, which are based on the information spectrum methods developed by Han and Verdú. Moreover, we establish the explicit second-order achievable rate region for independently and identically distributed (i.i.d.) correlated sources with countably infinite alphabets and mixtures of i.i.d. correlated sources, respectively, using the relevant asymptotic normality.

元の言語English
記事番号6856169
ページ(範囲)5553-5572
ページ数20
ジャーナルIEEE Transactions on Information Theory
60
発行部数9
DOI
出版物ステータスPublished - 2014 9
外部発表Yes

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

フィンガープリント Second-order slepian-wolf coding theorems for non-mixed and mixed sources' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用