抄録
This paper studies the Neumann problem of a nonlocal Allen–Cahn equation in an interval. A main result finds a symmetry breaking (secondary) bifurcation point on the bifurcation curve of solutions with odd-symmetry. Our proof is based on a level set analysis for the associated integral map. A method using the complete elliptic integrals proves the uniqueness of secondary bifurcation point. We also show some numerical simulations concerning the global bifurcation structure.
本文言語 | English |
---|---|
ページ(範囲) | 2687-2714 |
ページ数 | 28 |
ジャーナル | Journal of Differential Equations |
巻 | 263 |
号 | 5 |
DOI | |
出版ステータス | Published - 2017 9月 5 |
外部発表 | はい |
ASJC Scopus subject areas
- 分析
- 応用数学