Secure naïve bayes classification protocol over encrypted data using fully homomorphic encryption

Yoshiko Yasumura, Yu Ishimaki, Hayato Yamana

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Machine learning classification has a wide range of applications. In the big data era, a client may want to outsource classification tasks to reduce the computational burden at the client. Meanwhile, an entity may want to provide a classification model and classification services to such clients. However, applications such as medical diagnosis require sensitive data that both parties may not want to reveal. Fully homomorphic encryption (FHE) enables secure computation over encrypted data without decryption. By applying FHE, classification can be outsourced to a cloud without revealing any data. However, existing studies on classification over FHE do not achieve the scenario of outsourcing classification to a cloud while preserving the privacy of the classification model, client's data and result. In this work, we apply FHE to a naïve Bayes classifier and, to the best of our knowledge, propose the first concrete secure classification protocol that satisfies the above scenario.

本文言語English
ホスト出版物のタイトル21st International Conference on Information Integration and Web-Based Applications and Services, iiWAS 2019 - Proceedings
編集者Maria Indrawan-Santiago, Eric Pardede, Ivan Luiz Salvadori, Matthias Steinbauer, Ismail Khalil, Gabriele Anderst-Kotsis
出版社Association for Computing Machinery
ISBN(電子版)9781450371797
DOI
出版ステータスPublished - 2019 12月 2
イベント21st International Conference on Information Integration and Web-Based Applications and Services, iiWAS 2019 - Munich, Germany
継続期間: 2019 12月 22019 12月 4

出版物シリーズ

名前ACM International Conference Proceeding Series

Conference

Conference21st International Conference on Information Integration and Web-Based Applications and Services, iiWAS 2019
国/地域Germany
CityMunich
Period19/12/219/12/4

ASJC Scopus subject areas

  • ソフトウェア
  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Secure naïve bayes classification protocol over encrypted data using fully homomorphic encryption」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル