Securing Critical Infrastructures: Deep-Learning-Based Threat Detection in IIoT

Keping Yu*, Liang Tan, Shahid Mumtaz, Saba Al-Rubaye, Anwer Al-Dulaimi, Ali Kashif Bashir, Farrukh Aslam Khan

*この研究の対応する著者

研究成果: Article査読

61 被引用数 (Scopus)

抄録

The Industrial Internet of Things (IIoT) is a physical information system developed based on traditional industrial control networks. As one of the most critical infrastructure systems, IIoT is also a preferred target for adversaries engaged in advanced persistent threats (APTs). To address this issue, we explore a deep-learning-based proactive APT detection scheme in IIoT. In this scheme, considering the characteristics of long attack sequences and long-term continuous APT attacks, our solution adopts a well-known deep learning model, bidirectional encoder representations from transformers (BERT), to detect APT attack sequences. The APT attack sequence is also optimized to ensure the model's long-term sequence judgment effectiveness. The experimental results not only show that the proposed deep learning method has feasibility and effectiveness for APT detection, but also certify that the BERT model has better accuracy and a lower false alarm rate when detecting APT attack sequences than other time series models.

本文言語English
ページ(範囲)76-82
ページ数7
ジャーナルIEEE Communications Magazine
59
10
DOI
出版ステータスPublished - 2021 10月 1

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学

フィンガープリント

「Securing Critical Infrastructures: Deep-Learning-Based Threat Detection in IIoT」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル