Self-adjointness and conservation laws of difference equations

Linyu Peng*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

A general theorem on conservation laws for arbitrary difference equations is proved. The theorem is based on an introduction of an adjoint system related with a given difference system, and it does not require the existence of a difference Lagrangian. It is proved that the system, combined by the original system and its adjoint system, is governed by a variational principle, which inherits all symmetries of the original system. Noether's theorem can then be applied. With some special techniques, e.g. self-adjointness properties, this allows us to obtain conservation laws for difference equations, which are not necessary governed by Lagrangian formalisms.

本文言語English
ページ(範囲)209-219
ページ数11
ジャーナルCommunications in Nonlinear Science and Numerical Simulation
23
1-3
DOI
出版ステータスPublished - 2015 6月 1

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 数値解析
  • 応用数学

フィンガープリント

「Self-adjointness and conservation laws of difference equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル