Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity

Yuko K. Takahashi, Hiroshi Kori, Naoki Masuda

研究成果: Article査読

32 被引用数 (Scopus)

抄録

Spike-timing dependent plasticity (STDP) is an organizing principle of biological neural networks. While synchronous firing of neurons is considered to be an important functional block in the brain, how STDP shapes neural networks possibly toward synchrony is not entirely clear. We examine relations between STDP and synchronous firing in spontaneously firing neural populations. Using coupled heterogeneous phase oscillators placed on initial networks, we show numerically that STDP prunes some synapses and promotes formation of a feedforward network. Eventually a pacemaker, which is the neuron with the fastest inherent frequency in our numerical simulations, emerges at the root of the feedforward network. In each oscillatory cycle, a packet of neural activity is propagated from the pacemaker to downstream neurons along layers of the feedforward network. This event occurs above a clear-cut threshold value of the initial synaptic weight. Below the threshold, neurons are self-organized into separate clusters each of which is a feedforward network.

本文言語English
論文番号051904
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
79
5
DOI
出版ステータスPublished - 2009 5 11
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル