Self-similar solutions to the derivative nonlinear Schrödinger equation

Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa

研究成果: Article

抜粋

A class of self-similar solutions to the derivative nonlinear Schrödinger equations is studied. Especially, the asymptotics of profile functions are shown to posses a logarithmic phase correction. This logarithmic phase correction is obtained from the nonlinear interaction of profile functions. This is a remarkable difference from the pseudo-conformally invariant case, where the logarithmic correction comes from the linear part of the equations of the profile functions.

元の言語English
ページ(範囲)7940-7961
ページ数22
ジャーナルJournal of Differential Equations
268
発行部数12
DOI
出版物ステータスPublished - 2020 6 5

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント Self-similar solutions to the derivative nonlinear Schrödinger equation' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用