Semi-Supervised Speaker Adaptation for End-to-End Speech Synthesis with Pretrained Models

Katsuki Inoue, Sunao Hara, Masanobu Abe, Tomoki Hayashi, Ryuichi Yamamoto, Shinji Watanabe

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Recently, end-to-end text-to-speech (TTS) models have achieved a remarkable performance, however, requiring a large amount of paired text and speech data for training. On the other hand, we can easily collect unpaired dozen minutes of speech recordings for a target speaker without corresponding text data. To make use of such accessible data, the proposed method leverages the recent great success of state-of-the-art end-to-end automatic speech recognition (ASR) systems and obtains corresponding transcriptions from pretrained ASR models. Although these models could only provide text output instead of intermediate linguistic features like phonemes, end-to-end TTS can be well trained with such raw text data directly. Thus, the proposed method can greatly simplify a speaker adaptation pipeline by consistently employing end-to-end ASR/TTS ecosystems. The experimental results show that our proposed method achieved comparable performance to a paired data adaptation method in terms of subjective speaker similarity and objective cepstral distance measures.

本文言語English
ホスト出版物のタイトル2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ7634-7638
ページ数5
ISBN(電子版)9781509066315
DOI
出版ステータスPublished - 2020 5
外部発表はい
イベント2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
継続期間: 2020 5 42020 5 8

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2020-May
ISSN(印刷版)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
国/地域Spain
CityBarcelona
Period20/5/420/5/8

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Semi-Supervised Speaker Adaptation for End-to-End Speech Synthesis with Pretrained Models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル