Semialgebraic description of Teichmüller space

Yohei Komori*

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We give a concrete semialgebraic description of Teichmüller space Tg of the closed surface group Γg of genus g(≥2). Our result implies that for any SL2(R)-representation of Γg, we can determine whether this representation is discrete and faithful or not by using 4g-6 explicit trace inequalities. We also show the connectivity and contractibility of Tg from the point of view of SL2(R)-representations of Γg. Previously, these properties of Tg had been proved by using hyperbolic geometry and quasi-conformal deformations of Fuchsian groups. Our method is simple and only uses topological properties of the space of SL2(R)-representations of Γg.

本文言語English
ページ(範囲)527-571
ページ数45
ジャーナルPublications of the Research Institute for Mathematical Sciences
33
4
DOI
出版ステータスPublished - 1997 12月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Semialgebraic description of Teichmüller space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル