Shimura curves as intersections of humbert surfaces and defining equations of QM-curves of genus two

Kiichiro Hashimoto, Naoki Murabayashi

    研究成果: Article

    33 被引用数 (Scopus)

    抄録

    Shimura curves classify isomorphism classes of abelian surfaces with quaternion multiplication. In this paper, we are concerned with a fibre space, the base space of which is a Shimura curve and fibres are curves of genus two whose jacobian varieties are abelian surfaces of the above type. We shall give an explicit defining equation for such a fibre space when the discriminant of the quaternion algebra is 6 or 10.

    本文言語English
    ページ(範囲)271-296
    ページ数26
    ジャーナルTohoku Mathematical Journal
    47
    2
    DOI
    出版ステータスPublished - 1995

    ASJC Scopus subject areas

    • Mathematics(all)

    フィンガープリント 「Shimura curves as intersections of humbert surfaces and defining equations of QM-curves of genus two」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル