Short exponent diffie-hellman problems

Takeshi Koshiba, Kaoru Kurosawa

研究成果: Chapter

14 引用 (Scopus)

抜粋

In this paper, we study short exponent Diffie-Hellman problems, where significantly many lower bits are zeros in the exponent. We first prove that the decisional version of this problem is as hard as two well known hard problems, the standard decisional Diffie-Hellman problem (DDH) and the short exponent discrete logarithm problem. It implies that we can improve the efficiency of ElGamal scheme and Cramer-Shoup scheme under the two widely accepted assumptions. We next derive a similar result for the computational version of this problem.

元の言語English
ホスト出版物のタイトルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
編集者Feng Bao, Robert Deng, Jianying Zhou
出版者Springer Verlag
ページ173-186
ページ数14
ISBN(印刷物)3540210180, 9783540210184
DOI
出版物ステータスPublished - 2004 1 1
外部発表Yes

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2947
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント Short exponent diffie-hellman problems' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Koshiba, T., & Kurosawa, K. (2004). Short exponent diffie-hellman problems. : F. Bao, R. Deng, & J. Zhou (版), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 173-186). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 2947). Springer Verlag. https://doi.org/10.1007/978-3-540-24632-9_13