Short-term power load forecasting method by radial-basis-function neural network with support vector machine model

Jiliang Xue*, Junzo Watada

*この研究の対応する著者

    研究成果: Article査読

    8 被引用数 (Scopus)

    抄録

    Energy demand forecasting is crucial in the energy industry. Various methods have been proposed for load forecasting, including artificial neural networks - enhanced prediction algorithms based on structures and functions of biological neurons. According to the chaotic and nonlinear characteristics of power load data, the support vector machine (SVM) model has been used to predict power load. This paper proposes a new radial-basis-function neural network with a support vector machine (RBFNN-SVM) model to enable high accuracy in short-term power load forecasting. This approach applies RBFNN to predict the monthly increase before training the hourly data through SVM to obtain a final prediction. Using power load data from France for testing and verification, RBFNN-SVM performed well in predicting future load, showing that the proposed method is accurate and effective.

    本文言語English
    ページ(範囲)1523-1528
    ページ数6
    ジャーナルICIC Express Letters
    5
    5
    出版ステータスPublished - 2011 5月

    ASJC Scopus subject areas

    • コンピュータ サイエンス(全般)
    • 制御およびシステム工学

    フィンガープリント

    「Short-term power load forecasting method by radial-basis-function neural network with support vector machine model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル