Similar-Video Retrieval via Learned Exemplars and Time-Warped Alignment

Teruki Horie*, Masafumi Moriwaki, Ryota Yokote, Shota Ninomiya, Akihiro Shikano, Yasuo Matsuyama

*この研究の対応する著者

    研究成果: Conference contribution

    抄録

    New learning algorithms and systems for retrieving similar videos are presented. Each query is a video itself. For each video, a set of exemplars is machine-learned by new algorithms. Two methods were tried. The first and main one is the time-bound affinity propagation. The second is the harmonic competition which approximates the first. In the similar-video retrieval, the number of exemplar frames is variable according to the length and contents of videos. Therefore, each exemplar possesses responsible frames. By considering this property, we give a novel similarity measure which contains the Levenshtein distance (L-distance) as its special case. This new measure, the M-distance, is applicable to both of global and local alignments for exemplars. Experimental results in view of precision-recall curves show creditable scores in the region of interest.

    本文言語English
    ホスト出版物のタイトルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    出版社Springer Verlag
    ページ85-94
    ページ数10
    8836
    ISBN(印刷版)9783319126425
    出版ステータスPublished - 2014
    イベント21st International Conference on Neural Information Processing, ICONIP 2014 - Kuching
    継続期間: 2014 11月 32014 11月 6

    出版物シリーズ

    名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    8836
    ISSN(印刷版)03029743
    ISSN(電子版)16113349

    Other

    Other21st International Conference on Neural Information Processing, ICONIP 2014
    CityKuching
    Period14/11/314/11/6

    ASJC Scopus subject areas

    • コンピュータ サイエンス(全般)
    • 理論的コンピュータサイエンス

    フィンガープリント

    「Similar-Video Retrieval via Learned Exemplars and Time-Warped Alignment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル