Small data scattering of hartree type fractional schrödinger equations in dimension 2 and 3

Yonggeun Cho, Tohru Ozawa

研究成果: Article査読

抄録

In this paper we study the small-data scattering of the d dimensional fractional Schrödinger equations with d = 2, 3, Lévy index 1 < α < 2 and Hartree type nonlinearity F (u) = µ(|x|−γ ∗ |u|2)u with max (Formula presented) < γ ≤ 2, γ < d. This equation is scaling-critical in Ḣsc, (Formula presented). We show that the solution scatters in Hs,1 for any s > sc, where Hs,1 is a space of Sobolev type taking in angular regularity with norm defined by (Formula presented). For this purpose we use the recently developed Strichartz estimate which is L2 -averaged on the unit sphere Sd−1 and utilize Up -Vp space argument.

本文言語English
ページ(範囲)373-390
ページ数18
ジャーナルJournal of the Korean Mathematical Society
55
2
DOI
出版ステータスPublished - 2018

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Small data scattering of hartree type fractional schrödinger equations in dimension 2 and 3」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル