Small data scattering of hartree type fractional schrödinger equations in dimension 2 and 3

Yonggeun Cho, Tohru Ozawa

    研究成果: Article

    抜粋

    In this paper we study the small-data scattering of the d dimensional fractional Schrödinger equations with d = 2, 3, Lévy index 1 < α < 2 and Hartree type nonlinearity F (u) = µ(|x|−γ ∗ |u|2)u with max (Formula presented) < γ ≤ 2, γ < d. This equation is scaling-critical in Ḣsc, (Formula presented). We show that the solution scatters in Hs,1 for any s > sc, where Hs,1 is a space of Sobolev type taking in angular regularity with norm defined by (Formula presented). For this purpose we use the recently developed Strichartz estimate which is L2 -averaged on the unit sphere Sd−1 and utilize Up -Vp space argument.

    元の言語English
    ページ(範囲)373-390
    ページ数18
    ジャーナルJournal of the Korean Mathematical Society
    55
    発行部数2
    DOI
    出版物ステータスPublished - 2018 1 1

    ASJC Scopus subject areas

    • Mathematics(all)

    フィンガープリント Small data scattering of hartree type fractional schrödinger equations in dimension 2 and 3' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用