Small data scattering of hartree type fractional schrödinger equations in a scaling critical space

Yonggeun Cho, Tohru Ozawa, Changhun Yang

研究成果: Article査読

抄録

In this paper we study the small-data scattering of Hartree type fractional Schrödinger equations in space dimension 2, 3. It has Lévy index a between 1 and 2, and Hartree type nonlinearity F(u) = µ(|x|-y*|u|2)u with 2d/(2d - 1) < y < 2, y ≥ α > 1. This equation is scaling-critical in Hsc with sc (y-α)/2. We show that the solution scatters in Hsc,1 where Hsc, 1 is also a scaling critical space of Sobolev type taking in angular regularity with norm defined by. For this purpose we use the recently developed Strichartz estimate which is L2θ -averaged on the unit sphere Sd-1.

本文言語English
ページ(範囲)1-15
ページ数15
ジャーナルFunkcialaj Ekvacioj
64
1
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • 分析
  • 代数と数論
  • 幾何学とトポロジー

フィンガープリント

「Small data scattering of hartree type fractional schrödinger equations in a scaling critical space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル