Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation

Shuji Machihara, Kenji Nakanishi, Tohru Ozawa

研究成果: Article

36 引用 (Scopus)

抜粋

In this paper we study the Cauchy problem for the nonlinear Dirac equation in the Sobolev space Hs. We prove the existence and uniqueness of global solutions for small data in Hs with s > 1. The method of proof is based on the Strichartz estimate of Lt2 type for Dirac and Klein-Gordon equations. We also prove that the solutions of the nonlinear Dirac equation after modulation of phase converge to the corresponding solutions of the nonlinear Schrödinger equation as the speed of light tends to infinity.

元の言語English
ページ(範囲)179-194
ページ数16
ジャーナルRevista Matematica Iberoamericana
19
発行部数1
DOI
出版物ステータスPublished - 2003

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用