Small solutions to nonlinear wave equations in the Sobolev spaces

M. Nakamura, T. Ozawa

研究成果: Article査読

抄録

The local and global well-posedness for the Cauchy problem for a class of nonlinear wave equations is studied. The global well-posedness of the problem is proved in the homogeneous Sobolev space Ḣs = Ḣs(ℝn) of fractional order s > n/2 under the following assumptions: (1) Concerning the Cauchy data (φ,ψ) ∈ Ḣ ≡ Ḣs ⊕ Ḣs-1, ∥(φ,ψ); Ḣ1/2∥ is relatively small with respect to ∥(φ,ψ); Ḣσ∥ for any fixed σ with n/2 < σ ≤ s. (2) Concerning the nonlinearity f, f(u) behaves as a power u1+4/(n-1) near zero and has an arbitrary growth rate at infinity.

本文言語English
ページ(範囲)613-632
ページ数20
ジャーナルHouston Journal of Mathematics
27
3
出版ステータスPublished - 2001 12 1
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Small solutions to nonlinear wave equations in the Sobolev spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル