Smooth global solutions for two-dimensional equations of electro-magneto-fluid dynamics

Shuichi Kawashima*

*この研究の対応する著者

研究成果: Article査読

67 被引用数 (Scopus)

抄録

The equations of an electrically conducting compressible fluid in electro-magneto-fluid dynamics are studied. It is proved that in a certain case of two-dimensional flow, the equations of the fluid become a symmetric hyperbolic-parabolic system in both of the viscous and non-viscous cases. Therefore, the initial value problem is well posed in the Sobolev spaces at least for short time interval. Furthermore, in the viscous case, the solution exists globally in time and tends to the constant state as time goes to infinity, provided the initial data are closed to the constant state. The proof is based on a technical energy method, which makes use of a quadratic function associated with the total energy of the fluid.

本文言語English
ページ(範囲)207-222
ページ数16
ジャーナルJapan Journal of Applied Mathematics
1
1
DOI
出版ステータスPublished - 1984 9 1
外部発表はい

ASJC Scopus subject areas

  • 工学(全般)
  • 応用数学

フィンガープリント

「Smooth global solutions for two-dimensional equations of electro-magneto-fluid dynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル