Soliton resonance and web structure in the Davey-Stewartson system

Gino Biondini*, Dmitri Kireyev, Ken Ichi Maruno

*この研究の対応する著者

研究成果: Article査読

抄録

We write down and characterize a large class of nonsingular multi-soliton solutions of the defocusing Davey-Stewartson II equation. In particular we study their asymptotics at space infinities as well as their interaction patterns in the xy-plane, and we identify several subclasses of solutions. Many of these solutions describe phenomena of soliton resonance and web structure. We identify a subclass of solutions that is the analogue of the soliton solutions of the Kadomtsev-Petviashvili II equation. In addition to this subclass, however, we show that more general solutions exist, describing phenomena that have no counterpart in the Kadomtsev-Petviashvili equation, including V-shape solutions and soliton reconnection.

本文言語English
論文番号305701
ジャーナルJournal of Physics A: Mathematical and Theoretical
55
30
DOI
出版ステータスPublished - 2022 7月 29

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • モデリングとシミュレーション
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「Soliton resonance and web structure in the Davey-Stewartson system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル