Some features for blow-up solutions of a nonlinear parabolic equation

Koichi Anada, Tetsuya Ishiwata

研究成果: Article査読

2 被引用数 (Scopus)

抄録

In previous studies we have shown some conjectures for behavior of blow-up solutions to a nonlinear parabolic equations. They are very important features to investigate behavior of solutions near their blow-up time. The purpose of our paper is to prove one of them that we call "weak eventual monotonicity".

本文言語English
ページ(範囲)175-182
ページ数8
ジャーナルIAENG International Journal of Applied Mathematics
45
3
出版ステータスPublished - 2015

ASJC Scopus subject areas

  • 応用数学

フィンガープリント

「Some features for blow-up solutions of a nonlinear parabolic equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル