Space–Time computational analysis of tire aerodynamics with actual geometry, road contact, and tire deformation

Takashi Kuraishi*, Kenji Takizawa, Tayfun E. Tezduyar

*この研究の対応する著者

研究成果: Chapter

33 被引用数 (Scopus)

抄録

A new space–time (ST) computational method, “ST-SI-TC-IGA,” is enabling us to address the challenges faced in computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. The core component of the ST-SI-TC-IGA is the ST Variational Multiscale (ST-VMS) method, and the other key components are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA). The VMS feature of the ST-VMS addresses the challenge created by the turbulent nature of the flow, the moving-mesh feature of the ST framework enables high-resolution computation near the moving fluid–solid interfaces, and the higher-order accuracy of the ST framework strengthens both features. The ST-SI enables high-resolution representation of the boundary layers near the tire. The mesh covering the tire spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-TC enables moving-mesh computation even with the TC created by the contact between the tire and the road. It deals with the contact while maintaining high-resolution representation near the tire. Integration of the ST-SI and ST-TC enables high-resolution representation even though parts of the SI are coinciding with the tire and road surfaces. It also enables dealing with the tire-road contact location change and contact sliding. By integrating the ST-IGA with the ST-SI and ST-TC, in addition to having a more accurate representation of the tire surfaces and increased accuracy in the flow solution, the element density in the tire grooves and in the narrow spaces near the contact areas is kept at a reasonable level. We present computations with the ST-SI-TC-IGA and two models of flow around a rotating tire with road contact and prescribed deformation. One is a simple 2D model, and one is a 3D model with an actual tire geometry that includes the longitudinal and transverse grooves. The computations show the effectiveness of the ST-SI-TC-IGA in tire aerodynamics.

本文言語English
ホスト出版物のタイトルModeling and Simulation in Science, Engineering and Technology
出版社Springer Basel
ページ337-376
ページ数40
DOI
出版ステータスPublished - 2018

出版物シリーズ

名前Modeling and Simulation in Science, Engineering and Technology
ISSN(印刷版)2164-3679
ISSN(電子版)2164-3725

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 工学(全般)
  • 流体および伝熱
  • 計算数学

フィンガープリント

「Space–Time computational analysis of tire aerodynamics with actual geometry, road contact, and tire deformation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル