Spatially resolved measurement of wideband prompt gamma-ray emission toward on-line monitor for the future proton therapy

A. Koide*, J. Kataoka, T. Taya, Y. Iwamoto, K. Sueoka, S. Mochizuki, M. Arimoto, T. Inaniwa

*この研究の対応する著者

    研究成果査読

    2 被引用数 (Scopus)

    抄録

    In proton therapy, the delivered dose should be monitored to a high degree of accuracy to avoid unnecessary exposure to healthy tissues and critical organs. Although positron emission tomography (PET) is most frequently used to verify the proton range, the nuclear reactions between protons and nuclei that generate positrons do not necessarily correspond to the actual proton range. Moreover, such imaging must be conducted after the treatment irradiation, because a PET gantry cannot be used in conjunction with a proton therapy beam. In this paper, we studied one-dimensional (1D) and two-dimensional (2D) distributions of prompt gamma rays of various energies, to determine the most suitable energy window for online monitoring in proton therapy. After an initial simulation study using the particle and heavy ion transport code system (PHITS), we irradiated a poly(methyl methacrylate) (PMMA) phantom with a 70-MeV proton beam to mimic proton range verification in a clinical situation. Using a newly developed Compton camera, we have experimentally confirmed for the first time that 4.4-MeV gamma rays emitted from 12C and 16O match the exact position of the Bragg peak in proton range verification.

    本文言語English
    ページ(範囲)24-28
    ページ数5
    ジャーナルNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    912
    DOI
    出版ステータスPublished - 2018 12 21

    ASJC Scopus subject areas

    • 核物理学および高エネルギー物理学
    • 器械工学

    フィンガープリント

    「Spatially resolved measurement of wideband prompt gamma-ray emission toward on-line monitor for the future proton therapy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル