Speaker adaptation method for acoustic-to-articulatory inversion using an HMM-based speech production model

Sadao Hiroya*, Masaaki Honda

*この研究の対応する著者

研究成果査読

16 被引用数 (Scopus)

抄録

We present a speaker adaptation method that makes it possible to determine articulatory parameters from an unknown speaker's speech spectrum using an HMM (Hidden Markov Model)-based speech production model. The model consists of HMMs of articulatory parameters for each phoneme and an articulatory-to-acoustic mapping that transforms the articulatory parameters into a speech spectrum for each HMM state. The model is statistically constructed by using actual articulatory-acoustic data. In the adaptation method, geometrical differences in the vocal tract as well as the articulatory behavior in the reference model are statistically adjusted to an unknown speaker. First, the articulatory parameters are estimated from an unknown speaker's speech spectrum using the reference model. Secondly, the articulatory-to-acoustic mapping is adjusted by maximizing the output probability of the acoustic parameters for the estimated articulatory parameters of the unknown speaker. With the adaptation method, the RMS error between the estimated articulatory parameters and the observed ones is 1.65 mm. The improvement rate over the speaker independent model is 56.1 %.

本文言語English
ページ(範囲)1071-1078
ページ数8
ジャーナルIEICE Transactions on Information and Systems
E87-D
5
出版ステータスPublished - 2004 5

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Speaker adaptation method for acoustic-to-articulatory inversion using an HMM-based speech production model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル