Specifying latent factors with a domain model for personal data analysis

Kiichi Tago, Kosuke Takagi, Kenichi Ito, Qun Jin

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Personal data is data related to an individual, generated by an individual, or metadata about an individual. To analyze personal data comprehensively, it is needed to consider different types and sources of data. Moreover, it should be considered not only explicit attributes but also latent factors. In this study, to specify latent factors, we use Structural Equation Modeling (SEM) with a domain model for personal data analysis. The domain model represents the relationship between the latent factors and measures that are possible to be obtained by a wearable device. We construct an activeness model as the domain model and apply it for personal data analysis. The activeness level which is assumed as the latent factor is quantified by SEM. We verify the adaptability of the activeness model by comparing the case of classifying by the activeness factor with the case of not using latent factors. The result shows that the model has higher adaptability when personal data is classified by latent factors than only by labels.

本文言語English
ホスト出版物のタイトルProceedings - IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, IEEE 16th International Conference on Pervasive Intelligence and Computing, IEEE 4th International Conference on Big Data Intelligence and Computing and IEEE 3rd Cyber Science and Technology Congress, DASC-PICom-DataCom-CyberSciTec 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ292-299
ページ数8
ISBN(電子版)9781538675182
DOI
出版ステータスPublished - 2018 10 26
イベント16th IEEE International Conference on Dependable, Autonomic and Secure Computing, IEEE 16th International Conference on Pervasive Intelligence and Computing, IEEE 4th International Conference on Big Data Intelligence and Computing and IEEE 3rd Cyber Science and Technology Congress, DASC-PICom-DataCom-CyberSciTec 2018 - Athens, Greece
継続期間: 2018 8 122018 8 15

出版物シリーズ

名前Proceedings - IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, IEEE 16th International Conference on Pervasive Intelligence and Computing, IEEE 4th International Conference on Big Data Intelligence and Computing and IEEE 3rd Cyber Science and Technology Congress, DASC-PICom-DataCom-CyberSciTec 2018

Other

Other16th IEEE International Conference on Dependable, Autonomic and Secure Computing, IEEE 16th International Conference on Pervasive Intelligence and Computing, IEEE 4th International Conference on Big Data Intelligence and Computing and IEEE 3rd Cyber Science and Technology Congress, DASC-PICom-DataCom-CyberSciTec 2018
国/地域Greece
CityAthens
Period18/8/1218/8/15

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 人工知能
  • 情報システムおよび情報管理
  • 安全性、リスク、信頼性、品質管理
  • 制御と最適化

フィンガープリント

「Specifying latent factors with a domain model for personal data analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル