Spherical functions and local densities on the space of p -adic quaternion Hermitian forms

Yumiko Hironaka*

*この研究の対応する著者

研究成果査読

抄録

We introduce the space X of quaternion Hermitian forms of size n on a p-adic field with odd residual characteristic, and define typical spherical functions ω(x; s) on X and give their induction formula on sizes by using local densities of quaternion Hermitian forms. Then, we give functional equation of spherical functions with respect to Sn, and define a spherical Fourier transform on the Schwartz space S(K\X) which is Hecke algebra ℋ(G,K)-injective map into the symmetric Laurent polynomial ring of size n. Then, we determine the explicit formulas of ω(x; s) by a method of the author's former result. In the last section, we give precise generators of (K\X) and determine all the spherical functions for n ≤ 4, and give the Plancherel formula for n = 2.

本文言語English
ジャーナルInternational Journal of Number Theory
DOI
出版ステータスAccepted/In press - 2021

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Spherical functions and local densities on the space of p -adic quaternion Hermitian forms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル