Splitting stationary sets in p(λ)

研究成果: Article

1 引用 (Scopus)

抜粋

Let A be a non-empty set. A set S ⊆ P (A) is said to be stationary in P(A) if for every f: [A]<ω → A there exists x ∈ S such that x ≠ A and f"[x]<ω ⊆ x. In this paper we prove the following: For an uncountable cardinal λ and a stationary set S in P(λ), if there is a regular uncountable cardinal k ≤ λ such that {x ∈ S : x ∩ k ∈ k} is stationary, then S can be split into k disjoint stationary subsets.

元の言語English
ページ(範囲)49-62
ページ数14
ジャーナルJournal of Symbolic Logic
77
発行部数1
DOI
出版物ステータスPublished - 2012 3 1
外部発表Yes

ASJC Scopus subject areas

  • Philosophy
  • Logic

フィンガープリント Splitting stationary sets in p(λ)' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用