抄録
Let A be a non-empty set. A set S ⊆ P (A) is said to be stationary in P(A) if for every f: [A]<ω → A there exists x ∈ S such that x ≠ A and f"[x]<ω ⊆ x. In this paper we prove the following: For an uncountable cardinal λ and a stationary set S in P(λ), if there is a regular uncountable cardinal k ≤ λ such that {x ∈ S : x ∩ k ∈ k} is stationary, then S can be split into k disjoint stationary subsets.
本文言語 | English |
---|---|
ページ(範囲) | 49-62 |
ページ数 | 14 |
ジャーナル | Journal of Symbolic Logic |
巻 | 77 |
号 | 1 |
DOI | |
出版ステータス | Published - 2012 3月 |
外部発表 | はい |
ASJC Scopus subject areas
- 哲学
- 論理