Spreading and vanishing behaviors for radially symmetric solutions of free boundary problems for reaction-diffusion equations

Yuki Kaneko*

*この研究の対応する著者

    研究成果: Article査読

    20 被引用数 (Scopus)

    抄録

    We discuss free boundary problems modeling the diffusion of invasive or new species in a multi-dimensional ball or annulus, where unknown functions are population density and the outer boundary representing the spreading front of the species. We define spreading and vanishing to describe the asymptotic behaviors of radially symmetric solutions. The main purpose is to study the underlying principle to determine spreading and vanishing for the free boundary problems of general reaction-diffusion equations. We also focus on the problems with a logistic or bistable reaction term to show dichotomy results, vanishing speed and sufficient conditions for spreading or vanishing.

    本文言語English
    ページ(範囲)121-140
    ページ数20
    ジャーナルNonlinear Analysis: Real World Applications
    18
    1
    DOI
    出版ステータスPublished - 2014

    ASJC Scopus subject areas

    • 分析
    • 応用数学
    • 計算数学
    • 工学(全般)
    • 医学(全般)
    • 経済学、計量経済学および金融学(全般)

    フィンガープリント

    「Spreading and vanishing behaviors for radially symmetric solutions of free boundary problems for reaction-diffusion equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル