STABILITY OF BRANCHING LAWS FOR HIGHEST WEIGHT MODULES

Masatoshi Kitagawa*

*この研究の対応する著者

研究成果: Article査読

抄録

In this paper, we study the irreducible decomposition of a (ℂ[X];G)-module M for a quasi-affine spherical variety X of a connected reductive algebraic group G over ℂ. We show that for sufficiently large parameters, the decomposition of M with respect to G is reduced to the decomposition of the ‘fiber’ M/m(x0)M with respect to some reductive subgroup L of G. In particular, we obtain a method to compute the maximum value of multiplicities in M. Our main result is a generalization of earlier work by F. Satō in [17]. We apply this result to branching laws of holomorphic discrete series representations with respect to symmetric pairs of holomorphic type. We give a necessary and sufficient condition for multiplicity-freeness of the branching laws.

本文言語English
ページ(範囲)1027-1050
ページ数24
ジャーナルTransformation Groups
19
4
DOI
出版ステータスPublished - 2014 11月 18
外部発表はい

ASJC Scopus subject areas

  • 代数と数論
  • 幾何学とトポロジー

フィンガープリント

「STABILITY OF BRANCHING LAWS FOR HIGHEST WEIGHT MODULES」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル