Stability of heat kernel estimates for symmetric non-local dirichlet forms

Zhen Qing Chen, Takashi Kumagai, Jian Wang

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, variants of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particular, we establish stability of heat kernel estimates for α-stable-like processes even with α ≥ 2 when the underlying spaces have walk dimensions larger than 2, which has been one of the major open problems in this area.

本文言語English
ページ(範囲)1-100
ページ数100
ジャーナルMemoirs of the American Mathematical Society
271
1330
DOI
出版ステータスPublished - 2021
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Stability of heat kernel estimates for symmetric non-local dirichlet forms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル