Stabilization of solutions of the diffusion equation with a non-lipschitz reaction term

K. Kuto*

*この研究の対応する著者

研究成果: Conference article査読

抄録

In this paper we are concerned with the reaction-diffusion equation ut = Δu + f(u) in a ball of RN with Dirichlet boundary condition. We assume that f satisfies the concave-convex condition. A typical example is f(u) = |u|q-1u + |u|p-1u (0 < q < 1 < p < (N+2)/(N-2)). First we obtain the complete structure of positive solutions to the stationary problem; Δφ + f(φ) = 0. Next we state the relations between this structure and time-depending behaviors of nonnegative solutions (global existence or blow up) to the non-stationary problem.

本文言語English
ページ(範囲)789-800
ページ数12
ジャーナルNonlinear Analysis, Theory, Methods and Applications
47
2
DOI
出版ステータスPublished - 2001 8 1
イベント3rd World Congres of Nonlinear Analysts - Catania, Sicily, Italy
継続期間: 2000 7 192000 7 26

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Stabilization of solutions of the diffusion equation with a non-lipschitz reaction term」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル