Stabilized finite element method for the Rayleigh-Benard equations with infinite Prandtl number in a spherical shell

M. Tabata*, A. Suzuki

*この研究の対応する著者

研究成果: Article査読

27 被引用数 (Scopus)

抄録

A finite element scheme is developed and analyzed for a thermal convection problem of Boussinesq fluid with infinite Prandtl number in a spherical shell. This problem is a mathematical model of the Earth's mantle movement and has been a topic of interest for geophysicists. It is described by the Rayleigh-Benard equations with infinite Prandtl number, that is, a system of the Stokes equations and the convection-diffusion equation coupled with the buoyancy and the convection terms. A stabilized finite element scheme with P1/P1/P1 element is presented, and an error estimate is established. The obtained theoretical convergence order is also recognized by a numerical result. Another numerical result is shown as an example of the Earth's mantle movement simulation.

本文言語English
ページ(範囲)387-402
ページ数16
ジャーナルComputer Methods in Applied Mechanics and Engineering
190
3-4
出版ステータスPublished - 2000 10 27
外部発表はい

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 計算力学

フィンガープリント

「Stabilized finite element method for the Rayleigh-Benard equations with infinite Prandtl number in a spherical shell」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル