Stationary Navier–Stokes equations under inhomogeneous boundary conditions in 3D exterior domains

Matthias Hieber, Hideo Kozono*, Anton Seyfert, Senjo Shimizu, Taku Yanagisawa

*この研究の対応する著者

研究成果: Article査読

抄録

In an exterior domain Ω ⊂ R3 having compact boundary ∂Ω=⋃j=1LΓj with L disjoint smooth closed surfaces Γ 1, … , Γ L, we consider the problem on the existence of weak solutions v of the stationary Navier–Stokes equations in Ω satisfying v|Γj=βj, j= 1 , … , L and v→ 0 as | x| → ∞, where βj are the given data on the boundary component Γ j, j= 1 , … , L. Our first task is to find an appropriate solenoidal extension b into Ω , i.e., divb=0 satisfying b|Γj=βj, j= 1 , … , L. By our previous result [8] on the Lr-Helmholtz-Weyl decomposition, b is expressed as b=h+rotw, where h is a harmonic vector field depending only on the flux ∫Γjβj·νdS through Γ j, j= 1 , … , L. Next, we prove that if h is small in L3(Ω) , then there exists a weak solution v with ∇ v∈ L2(Ω).

本文言語English
論文番号180
ジャーナルCalculus of Variations and Partial Differential Equations
60
5
DOI
出版ステータスPublished - 2021 10

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Stationary Navier–Stokes equations under inhomogeneous boundary conditions in 3D exterior domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル