Stationary patterns for an adsorbate-induced phase transition model: II. Shadow system

Kousuke Kuto, Tohru Tsujikawa

研究成果: Article査読

4 被引用数 (Scopus)

抄録

This paper is concerned with stationary solutions of a reaction-diffusion- advection system arising in surface chemistry. Hildebrand et al (2003 New J. Phys. 5 61) have constructed stationary stripe (or spot) solutions of the system in the singular perturbation case and shown a numerical result that the set of stripe (or spot) solutions forms a saddle-node bifurcation curve with respect to a diffusion coefficient. In this paper, we introduce a shadow system in the limiting case that another diffusion and an advection coefficient tend to infinity. Furthermore we obtain the bifurcation structure of stationary solutions of the shadow systems in the one-dimensional case. This structure involves saddle-node bifurcation curves which support the above numerical result in Hildebrand et al (2003 New J. Phys. 5 61, figure 9). Our proof is based on the combination of the bifurcation, the singular perturbation and a level set analysis.

本文言語English
ページ(範囲)1313-1343
ページ数31
ジャーナルNonlinearity
26
5
DOI
出版ステータスPublished - 2013 5
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Stationary patterns for an adsorbate-induced phase transition model: II. Shadow system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル