TY - JOUR
T1 - Statistical analysis of dyadic stationary processes
AU - Taniguchi, M.
AU - Zhao, L. C.
AU - Krishnaiah, P. R.
AU - Bai, Z. D.
PY - 1989/6/1
Y1 - 1989/6/1
N2 - In this paper we consider a multiple dyadic stationary process with the Walsh spectral density matrix fθ(λ), where θ is an unknown parameter vector. We define a quasi-maximum likelihood estimator {Mathematical expression} of θ, and give the asymptotic distribution of {Mathematical expression} under appropriate conditions. Then we propose an information criterion which determines the order of the model, and show that this criterion gives a consistent order estimate. As for a finite order dyadic autoregressive model, we propose a simpler order determination criterion, and discuss its asymptotic properties in detail. This criterion gives a strong consistent order estimate. In Section 5 we discuss testing whether an unknown parameter θ satisfies a linear restriction. Then we give the asymptotic distribution of the likelihood ratio criterion under the null hypothesis.
AB - In this paper we consider a multiple dyadic stationary process with the Walsh spectral density matrix fθ(λ), where θ is an unknown parameter vector. We define a quasi-maximum likelihood estimator {Mathematical expression} of θ, and give the asymptotic distribution of {Mathematical expression} under appropriate conditions. Then we propose an information criterion which determines the order of the model, and show that this criterion gives a consistent order estimate. As for a finite order dyadic autoregressive model, we propose a simpler order determination criterion, and discuss its asymptotic properties in detail. This criterion gives a strong consistent order estimate. In Section 5 we discuss testing whether an unknown parameter θ satisfies a linear restriction. Then we give the asymptotic distribution of the likelihood ratio criterion under the null hypothesis.
KW - Dyadic stationary process
KW - Walsh spectral density
KW - information criterion
KW - likelihood ratio criterion
KW - quasi-maximum likelihood estimator
UR - http://www.scopus.com/inward/record.url?scp=0141954604&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141954604&partnerID=8YFLogxK
U2 - 10.1007/BF00049392
DO - 10.1007/BF00049392
M3 - Article
AN - SCOPUS:0141954604
SN - 0020-3157
VL - 41
SP - 205
EP - 225
JO - Annals of the Institute of Statistical Mathematics
JF - Annals of the Institute of Statistical Mathematics
IS - 2
ER -