Statistical estimation of optimal portfolios for locally stationary returns of assets

Hiroshi Shiraishi, Masanobu Taniguchi

研究成果: Article査読

2 被引用数 (Scopus)

抄録

This paper discusses the asymptotic property of estimators for optimal portfolios when the returns are vector-valued locally stationary processes. First, we derive the asymptotic distribution of a nonparametric portfolio estimator based on the kernel method. Optimal bandwidth and kernel function are given by minimizing the mean squares error of it. Next, assuming parametric models for non-Gaussian locally stationary processes, we prove the LAN theorem, and propose a parametric portfolio estimator ĝ based on a quasi-maximum likelihood estimator. Then it is shown that ĝ is asymptotically efficient based on the LAN. Numerical studies are provided to investigate the accuracy of the portfolio estimators parametrically and nonparametrically. They illuminate some interesting features of them.

本文言語English
ページ(範囲)129-154
ページ数26
ジャーナルInternational Journal of Theoretical and Applied Finance
10
1
DOI
出版ステータスPublished - 2007 2 1

ASJC Scopus subject areas

  • Finance
  • Economics, Econometrics and Finance(all)

フィンガープリント 「Statistical estimation of optimal portfolios for locally stationary returns of assets」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル