Statistical portfolio estimation under the utility function depending on exogenous variables

Kenta Hamada, Dong Wei Ye, Masanobu Taniguchi*

*この研究の対応する著者

研究成果査読

抄録

In the estimation of portfolios, it is natural to assume that the utility function depends on exogenous variable. From this point of view, in this paper, we develop the estimation under the utility function depending on exogenous variable. To estimate the optimal portfolio, we introduce a function of moments of the return process and cumulant between the return processes and exogenous variable, where the function means a generalized version of portfolio weight function. First, assuming that exogenous variable is a random process, we derive the asymptotic distribution of the sample version of portfolio weight function. Then, an influence of exogenous variable on the return process is illuminated when exogenous variable has a shot noise in the frequency domain. Second, assuming that exogenous variable is nonstochastic, we derive the asymptotic distribution of the sample version of portfolio weight function. Then, an influence of exogenous variable on the return process is illuminated when exogenous variable has a harmonic trend. We also evaluate the influence of exogenous variable on the return process numerically.

本文言語English
論文番号127571
ジャーナルAdvances in Decision Sciences
2012
DOI
出版ステータスPublished - 2012

ASJC Scopus subject areas

  • 決定科学(全般)
  • 統計学および確率
  • 計算数学
  • 応用数学

フィンガープリント

「Statistical portfolio estimation under the utility function depending on exogenous variables」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル