Steady state and mean recurrence time for random walks on stochastic temporal networks

Leo Speidel*, Renaud Lambiotte, Kazuyuki Aihara, Naoki Masuda

*この研究の対応する著者

研究成果査読

16 被引用数 (Scopus)

抄録

Random walks are basic diffusion processes on networks and have applications in, for example, searching, navigation, ranking, and community detection. Recent recognition of the importance of temporal aspects on networks spurred studies of random walks on temporal networks. Here we theoretically study two types of event-driven random walks on a stochastic temporal network model that produces arbitrary distributions of interevent times. In the so-called active random walk, the interevent time is reinitialized on all links upon each movement of the walker. In the so-called passive random walk, the interevent time is reinitialized only on the link that has been used the last time, and it is a type of correlated random walk. We find that the steady state is always the uniform density for the passive random walk. In contrast, for the active random walk, it increases or decreases with the node's degree depending on the distribution of interevent times. The mean recurrence time of a node is inversely proportional to the degree for both active and passive random walks. Furthermore, the mean recurrence time does or does not depend on the distribution of interevent times for the active and passive random walks, respectively.

本文言語English
論文番号012806
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
91
1
DOI
出版ステータスPublished - 2015 1 1
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Steady state and mean recurrence time for random walks on stochastic temporal networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル