Steady-State Navier-Stokes Flows Past a Rotating Body: Leray Solutions are Physically Reasonable

Giovanni P. Galdi, Mads Kyed*

*この研究の対応する著者

研究成果: Article査読

26 被引用数 (Scopus)

抄録

A rigid body, B moves in a Navier-Stokes liquid,L, filling the whole space outside B We assume that, when referred to a frame attached to B, the nonzero velocity of the center of mass, ξ, and the angular velocity, ω, of are constant and that the flow of L is steady. Our main theorem implies that every "weak" steady-state solution in the sense of Leray is, in fact, physically reasonable in the sense of Finn, for data of arbitrary "size". Such a theorem improves and generalizes an analogous famous result of Babenko (Math USSR Sb 20:1-25, 1973), obtained in the case ω = 0.

本文言語English
ページ(範囲)21-58
ページ数38
ジャーナルArchive for Rational Mechanics and Analysis
200
1
DOI
出版ステータスPublished - 2011 4月
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数学(その他)
  • 機械工学

フィンガープリント

「Steady-State Navier-Stokes Flows Past a Rotating Body: Leray Solutions are Physically Reasonable」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル