Steady-State Navier-Stokes Flows Past a Rotating Body: Leray Solutions are Physically Reasonable

Giovanni P. Galdi, Mads Kyed

研究成果: Article

24 引用 (Scopus)

抜粋

A rigid body, B moves in a Navier-Stokes liquid,L, filling the whole space outside B We assume that, when referred to a frame attached to B, the nonzero velocity of the center of mass, ξ, and the angular velocity, ω, of are constant and that the flow of L is steady. Our main theorem implies that every "weak" steady-state solution in the sense of Leray is, in fact, physically reasonable in the sense of Finn, for data of arbitrary "size". Such a theorem improves and generalizes an analogous famous result of Babenko (Math USSR Sb 20:1-25, 1973), obtained in the case ω = 0.

元の言語English
ページ(範囲)21-58
ページ数38
ジャーナルArchive for Rational Mechanics and Analysis
200
発行部数1
DOI
出版物ステータスPublished - 2011 4
外部発表Yes

ASJC Scopus subject areas

  • Analysis
  • Mathematics (miscellaneous)
  • Mechanical Engineering

フィンガープリント Steady-State Navier-Stokes Flows Past a Rotating Body: Leray Solutions are Physically Reasonable' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用